The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

Graphics Links at Holmes3D.net

The DCEL Data Structure for 3D Graphics
by
Ryan Holmes

What is a DCEL?

DCEL stands for Doubly-Connected Edge List. A DCEL is a data structure for efficiently storing
topological information about a 2D surface (Possibly located in 3D space). The surfaces so represented
are usually considered to be equivalent to planar subdivisions, although not every implementation will
necessarily be able to store a true planar subdivision. (See Advanced Issues below).

The surface in question is composed of faces
(polygons), edges (boundaries between two adjacent
faces), and vertices (boundaries between two
adjacent edges). Edges are only permitted to touch
each other at vertices, which means that edges never
cross each other. In 2D this is a "subdivision" of the
plane: the plane is divided into pieces by edges, and
every one of those pieces is a face.

We will be concerned with the surface located in
3D space. When we move to 3D, we still have a 2D

http://www.holmes3d.net/graphics/dcel/ Page 1 of 12


http://www.holmes3d.net/graphics/
http://www.holmes3d.net/graphics/dcel/#AdvancedIssues

The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

surface, it just is no longer constrained to lie in the
2D plane. Our surface is still constrained to be
manifold. This means that every edge is like an
edge in the 2D surface in that it separates two faces
(You can never have three or more faces sharing the
same edge). We will also constrain our surface to be
orientable, that is, every face has an inside and an
outside (equivalent to looking at it from above or
below the 2D plane) and all neighboring faces have
consistent insides and outsides. This type of surface
is familiar to most 3D graphics users as a polygon
mesh. (Or, if we further limit every face to having
three sides, as a triangle mesh).

Attt
A4t 1}
e . ]

A DCEL data structure gives us a way to describe a polygon mesh in such a way that it is easy to find
neighbors of vertices, edges or faces without searching through long lists of polygons. This fast access is
very useful, as we will see.

Overview

The DCEL data structure is centered around the concept of the edge, but in a slightly non-intuitive
fashion. Instead of representing an edge directly, every edge is composed of two "half-edges". The two
half-edges that compose an edge are said to be "twins" of each other, and store pointers to each other.
Each half-edge stores a pointer to its origin, but not to its destination. The destination of a given half-edge
h can be found by look at the origin pointer of h's twin. This organizational strategy means that every half-
edge has an orientation, and that orientation is always opposite to the orientation of its twin.

‘ \. |
A half-edge has an "outside" that touches a face and

an "inside" that touches its twin. We are free to
choose which of these is which, but we will choose
the "outside" to be the left side, viewing the directed
half-edge from the top (For reasons to be seen

later). Now we can see that every half-edge has a
single face that touches it. We will store a pointer to

this face in the half-edge.

Note that the name Doubly-Connected Edge List is somewhat deceptive, and not very descriptive. The
same data structure is sometimes known as a Halfedge, Half-Edge, or twin-edge data structure, all of
which are better names. The original DCEL structure used oriented edges with two vertex pointers per
edge, instead of half-edges, and was thus not as useful or as efficient. The basic idea was similar however,
and the more efficient structure retained the original name.

http://www.holmes3d.net/graphics/dcel/ Page 2 of 12


http://mathworld.wolfram.com/Manifold.html
http://en.wikipedia.org/wiki/Orientability

The DCEL Data Structure for 3D Graphics

The Objects

6/20/13 12:28 PM

The DCEL data structure consists of three types of objects; vertices, half-edges, and faces. These objects
primarily consist of "pointers" to other DCEL objects. These could be literal C/C++ pointers that contain
memory addresses of other objects, or could be handles, array indices, or other types of addressing. The
essential quality is that they allow direct access to the pointed-to object, without searching. For the sake of
description I use the word pointer to refer to this type of reference and the C++ arrow notation to refer to a
particular instance's pointer (e.g. h->origin is the origin pointer of the HalfEdge h).

Note that each of the objects is of fixed size. Even for meshes composed of triangles, quadrilaterals and
general polygons, the objects contain the same amount of information per object.

The Vertex Object

A Vertex object contains a single DCEL pointer,
named "leaving", to a HalfEdge object. This pointer
points to a single HalfEdge that has this Vertex
object as its origin. If multiple HalfEdges have this
Vertex object as their origin, the leaving pointer can
point to any one of them arbitrarily.

The HalfEdge Object

The HalfEdge object contains a pointer to a Vertex,
named "origin", a pointer to a Face named "face",
and two pointers to HalfEdges, one named "twin"
and one named "next". The origin is the vertex from
which the HalfEdge starts. The face is the face on
the "left" side of the HalfEdge, while the twin
pointer points to the HalfEdge on the "right" side of
the HalfEdge that completes its edge. The "next"
pointer points to the HalfEdge that starts from h-
>twin->origin and ends at the next vertex in h-
>face, traveling counterclockwise around the
boundary. This pointer allows us to traverse a
polygon, by following next pointers until we arrive
back at the HalfEdge we began at.

http://www.holmes3d.net/graphics/dcel/

—

—

i
\

/

/

o
\\

-

P

P

Page 3 of 12



The DCEL Data Structure for 3D Graphics

The Face Object

A Face object contains a single DCEL pointer,
named "edge", to a HalfEdge object. This pointer
points to a single HalfEdge that has this Face object
as its face. This HalfEdge can be any one of the
Face object's boundary HalfEdges.

The Framework

6/20/13 12:28 PM

A DCEL data structure is a collection of Vertex, HalfEdge, and Face objects, with "correct" pointers
between the objects. In a minimal case this is enough. We will add three more ideas to these collections.

Iterators

In many uses of a DCEL data structure we will want to apply some operation to all Vertex, HalfEdge,
and/or Face objects. Therefore, we need some method of iteration that will allow us to touch each object
of each respective type once and only once. In practice this means the objects are in an array, linked list,
or some other type of structure that allows ordered traversal. Depending on our specific need this structure

may need to be dynamic, allowing insertion and deletion of objects.

The Infinite Face

We have, until now, avoided describing the
boundary of a mesh. We have described all edges as
having a face on either side. However, intuitively, if
we have a boundary we will have edges that have a
face on one side and nothing on the other side. To
keep the structure consistent we introduce a special
"infinite face"; a Face object that is not traversed by
the iterators and is always accessible for
comparison and testing. This face is the face on the
"outside" of all boundary edges. Depending on the
intended use of the DCEL structure it may or may
not store an edge pointer, because it may not be
meaningful to try to traverse the edges of the
infinite face For instance in the image to the right
the edges of the infinite face form six separate

http://www.holmes3d.net/graphics/dcel/

Page 4 of 12



The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

pieces, one chain each where each arm of the mesh
opens out.

Associated Data

For most applications we will want some further type of data associated with some or all of our DCEL
objects. This data may be something that is complex enough to calculate that we want to cache it with the
object (e.g. the normal of a face or the normal of a vertex), or may be temporary data required as part of
some algorithm on the structure (e.g. an "already visited" tag when flood-filling a surface). There are
numerous ways to handle associated data, which largely depend upon the data in question. Normals, for
instance, may be so common that we just add them to our objects, or to sub-classes of base objects.
Temporary data may be so rarely used that we feel it worthwhile to set up a separate hash table to
associate DCEL objects with the temporary data. I will generically say that data D is associated with a
DCEL object O when given O, we can find D in constant time. Note that this does not necessarily mean
that given D we can find O, although we may also create that association if needed.

Advanced Issues

The simple description above sidesteps several important issues for DCEL structures, in large part
because the structure as presented is sufficient for our purposes in 3D graphics. The following issues may
be important to your particular need, but are often not as important in 3D graphics.

Convention Choices

There are several choices in the presentation above that are entirely arbitrary. We have presented half-
edges as storing a pointer to their origin vertex. We could just as easily store a pointer to their destination
vertex, and find the origin by using the twin's destination (Note that we would likely want to store an
"arriving" half-edge on the vertices in this case). In similar fashion, we have decided that we will have
faces "to the left" of edges, and thus traverse polygons in counterclockwise order. We could reverse this,
and define a clockwise ordering (Which would perhaps be reasonable in a DirectX environment). We also
are storing only a "next" pointer on half-edges. We could store the "previous" pointer as well as, or
instead of, the next pointer, so long as we were willing to traverse polygons "backward" to find the entire
border. In 3D graphics we normally need to traverse in the order we will be drawing, so we have chosen

http://www.holmes3d.net/graphics/dcel/ Page 5 of 12



The DCEL Data Structure for 3D Graphics

6/20/13 12:28 PM

the next pointer. For non-graphic applications, the choice is more a matter of personal preference.

Holes

The presented structure does not allow "holes" in
faces. In a completely general planar subdivision it
would be permissible to have an unconnected
"island" face floating within another face. To handle
this case faces would need to store pointer(s) to
interior faces in some fashion (either the faces
themselves, or half-edges on their borders). In
practice this type of mesh is undesirable, because it
creates non-convex polyhedra that are difficult to
render directly (hardware will want to tessellate
them to triangles, which will render poorly unless
more information is provided). Note that in our
description the infinite face may actually have
"holes", in that our mesh may contain several
unconnected boundaries. As we saw above, this
prevents us from traversing the entire boundary of
the infinite face by following next pointers unless
we specifically disallow this type of boundary in
our algorithms (i.e. allow only one connected
boundary edge on our mesh).

Degenerate Edges

Although nothing specific in the presentation above
forbids it, there is a general assumption that the two
faces on either side of a given edge are not the same
face, that is, every edge lies between two different
faces. For rendering 3D polygon meshes, we almost
certainly mean this to be the case. For a general
planar subdivision isolated edges are permitted,
which leads to complex questions of boundary. For
example, the figure to the right has two faces, one
triangle and one seven-sided face.

Nonlinear Components

http://www.holmes3d.net/graphics/dcel/

Page 6 of 12



The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

The above presentation assumes that the edge
between two vertices is a straight line, but there is
nothing in the underlying structure that requires that
condition. We could, for example, store coordinates
on each half-edge and define an edge to be the cubic
Bezier curve with control points h->origin, h-
>coordinates, h->twin->coordinates, h->twin-
>origin. Similarly, faces would not necessarily have
to be planar. In a usual rendering situation it is
preferable to have straight edges, but again, a
general planar subdivision could involve arbitrary
curved edges.

Level of Detail

For some applications it may not be necessary to store and update every single pointer. For instance, if we
will never be selecting a point and querying for its neighbors, we may not need to store the "leaving"
pointer in vertices. Similarly, we may not need to store faces at all, if our application is more focused on
the face boundaries. In most cases it is probably best to start with the full structure, then later optimize it
after you are sure of which algorithms you will be using on it and which pointers they will require.

Why Use a DCEL for 3D Graphics?

Now that we've described a DCEL data structure, let us consider why we might want to use one for 3D
graphics.

Connectivity Queries

Have constant time access to the neighborhood of an arbitrary point can be very useful. We can compute a
normal for any given face easily, on demand, even if the vertex locations are changing. We can also
traverse every face touching a vertex (the "star" of the vertex) to easily estimate a normal for that vertex.
If we are locally changing small portions of a mesh, this is much easier than recomputing the normals for
every vertex in the mesh. Similarly, mesh simplification for Level of Detail or compressed storage
becomes easier when neighbors are easily found. Subdivision algorithms such as Loop and Catmull-Clark
are relatively easy on a DCEL, especially adaptive subdivision.

Flexible Data Format

When you are uncertain if the mesh you are loading or creating will be entirely triangles or will include
polygons of larger size, the DCEL is a space-efficient way of holding the mesh. Every polygon in the
mesh can be treated identically, rather than having to store polygon sizes and variable step sizes between
polygon starts and ends.

Limited Domain

http://www.holmes3d.net/graphics/dcel/ Page 7 of 12



The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

Because a DCEL will not hold a non-manifold mesh, it can be helpful for maintaining a consistent mesh
over several algorithms (e.g. triangulation followed by smoothing followed by simplification). If your
algorithms are designed to work with DCEL structures they will generally avoid tearing holes or inverting
random polygons.

Why Not Use a DCEL for 3D Graphics?

The DCEL structure sounds wonderful! Why not use it for everything?
Too Much Overhead

The DCEL structure is overkill if all you need to do is calculate normals for vertices once. If you don't
need to use the strengths of the DCEL structure, look for another structure with strengths that match your
needs. Keeping track of extra pointers and large dynamic sets of objects adds bookkeeping concerns and
may require a good memory management subsystem to make it efficient for large meshes.

Too Complex

Creating and using a DCEL can use more brainpower than it is worth. If your problem doesn't require the
complexity, it may be better to spend your time speeding up algorithms on an inefficient but simple
structure than to spend your time rewriting them to run on a DCEL.

Too Generic

Generic solutions are frequently not the fastest solutions. If speed is of the essence and there is only a
single algorithm you ever intend to run on a mesh, there may well be a structure that makes that algorithm
much faster than it could ever be on a DCEL. Similarly, if you only have a static mesh of pure triangles
that will never be modified, there is little point in converting it to a rich data structure that supports
extensive modification. There are more space-efficient ways of storing pure triangle meshes that still
provide reasonable time-efficiency for neighborhood queries.

Limited Domain

The DCEL structure doesn't handle non-manifold meshes, which may rule it out entirely for some
situations. It is also not very useful for large sets of unconnected (but nearby) triangles, because the
neighborhood information relies on true connections between polygons. Other structures are better for
finding nearest neighbor vertices that are not joined by direct edges.

Implementation Issues

Implementation issues for a DCEL are similar to the implementation issues for any complex data
structure; a balance between usability, power, flexibility and speed. When implementing for use in 3D
graphics there can be somewhat more emphasis on speed, but the exact balance will depend on the needs
of the users.

Container Issues

http://www.holmes3d.net/graphics/dcel/ Page 8 of 12



The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

The choice of containers for your DCEL objects is an important one. Very different choices are available,
depending on the aspects of the structure that you will be using. A common implementation choice is
doubly-linked lists. These allow for very easy inserting and deletion of objects, which is important for
algorithms that expand or contract the mesh (Such as subdivision or simplification). Another popular
choice, especially for heavily optimized or special-case implementations, is arrays. These are harder to
use for insertion and deletion, but can be more memory efficient by using very organized memory
techniques to calculate locations of related items by index math (e.g. storing pairs of twins on odd and
even indices, thus removing the need for a separate twin pointer). These types of optimizations can be
difficult to maintain through algorithm applications, and to encapsulate from the user. The array container
paradigm can allow larger meshes (due to higher memory efficiency) and can be efficient for certain types
of algorithms where the size of the mesh is not highly dynamic (Most non-adaptive subdivision
algorithms, for instance, grow by a predictable amount per step, which could be pre-allocated).

Iterator Issues

The most frequent use of the container iterators will be iterating once through every object of a particular
type (For example iterating through the faces and calculating a normal for each). The order is generally
immaterial (although it may be desirable to sort by some property for other purposes) but we don't want to
hit the same object twice. We often need to process every object while we are creating or modifying the
DCEL structure itself, so it is unwise to depend on all pointers in the structure being correct. (For
instance, doing a graph traversal of the mesh, depending on every half-edge to have a twin during the
iteration process). For a minimal implementation based on doubly-linked lists, the linked list pointers may
be all the iterator support you need. If you are willing to invest the time and energy into coding STL-
compatible iterators, you will open up your collections to the STL algorithms, which can be helpful.
Doing this efficiently is a complex design task though, and should only be undertaken if the payoff will be
substantial.

Associated Data Issues

Data associated with the DCEL objects is one of the most powerful aspects of the DCEL. Many complex
topological problems become much easier if small amounts of data can be temporarily stored on or with
objects during the processing. However, the exact type of data stored will vary drastically from algorithm
to algorithm (or even from step to step of the same algorithm). The design of this subsystem, therefore,
must be carefully balanced. For an expert user, a void pointer can be included with each object. This is
very user-unfriendly and is inherently unsafe, but is very flexible and fast. For a more user-friendly
system associated data can be stored in a separate hash table or array, indexed by unique keys stored on
the objects (Which could, perhaps, be the memory address of the object itself). For data that you will
absolutely always need (in your implementation) you can include it in the objects themselves. This is
probably only the vertex locations and possibly normals if you intend to use your structure for rendering
frequently.

Usability Issues

The DCEL structure is complex enough conceptually without having to deal with obscure code. A
primary concern in your implementation should be usability and robustness. In most cases it is worth a
small slowdown if the trade-off is a higher probability of every pointer being correct. You should include
routines that can check the structure for consistency for debugging. One missing next pointer can go
unnoticed for several operations before suddenly bringing the entire program to a halt. It is also
worthwhile to code a small, complex algorithm that uses the DCEL significantly, test it thoroughly, and

http://www.holmes3d.net/graphics/dcel/ Page 9 of 12



The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

use that algorithm as a basic correctness test when developing other algorithms. If the complex routine
works before and after the DCEL modification, there is a good chance that the algorithm in development
generates a correct DCEL.

A Sample Implementation

I have written a sample implementation of the DCEL structure in C++. It uses doubly-linked lists
encapsulated in a mesh container, a simple forward-only iterator scheme, and void pointer associated data.
The sample code also contains code for loading and saving basic OFF files as a demonstration of how the
associated data can be used for temporary storage. My mesh manipulation program MeshMan uses a
variant of this code to implement a number of mesh operations, including subdivision, simplification, and
tessellation.

The example code is free to use, although it would be polite to cite this page if you use it in a project of
your own. I'd love to hear about bugs or simple extensions (especially if you write code for loading or
saving other file types). You can see how to contact me here.

The code was written in Visual Studio, but should be relatively compatible. The included files are
described below.

ExampleCode.zip 14.6KB.

Files Included

DCELVertex.h and DCELVertex.cpp
DCELVertex class implementing the Vertex object.

DCELFace.h and DCELFace.cpp
DCELFace class implementing the Face object.

DCELHalfEdge.h and DCELHalfEdge.cpp
DCELHalfEdge class implementing the HalfEdge object.

DCELMesh.h and DCELMesh.cpp
DCELMesh class, a container object that is the primary interface to the mesh. Supports iteration
over objects that have been inserted into it, and computes some statistics over the whole of the
mesh.

DCELTools.h and DCELTools.cpp
DCELTools class demonstrating some consistency checks and how to load and save the DCEL
structure to a basic OFF file.

HalfEdgeList.h and HalfEdgeList.cpp
HalfEdgeList class implementing a simple singly-linked list of DCELHalfEdge pointers for
temporary storage during the build.

Vector.h and Vector.cpp
Vector class implementing various vector operations. Used to store vertex locations in the
DCELVertex class.

An Example Program

http://www.holmes3d.net/graphics/dcel/ Page 10 of 12


http://www.holmes3d.net/graphics/offfiles/
http://www.holmes3d.net/graphics/meshman/
http://www.holmes3d.net/ryan/contact.html
http://www.holmes3d.net/graphics/dcel/ExampleCode.zip

The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

T — o
te Bee Gk tee
q TR TR TR
: '*'-'f'::?-,-, L ,.,‘-:;“
S y!

L
I have written a small OpenGL program utilizing - 'l-";.

the above sample implementation, DCELViewer,
that loads OFF files and displays the various DCEL
components. Shift+Click to select faces, half-edges
or vertices and see which other objects are
connected to the selected object. You can change
several display colors and size properties on the
menus.

DCELViewer.zip 235KB. Includes DCELViewer.exe, BasicExample.off and 3DExample.off

Resources and Further Reading

The Half-Edge Data Structure

http://www.flipcode.com/articles/article halfedge.shtml

An excellent description of the basic structure, with C structures and some iteration examples for
topological queries.

Halfedge Data Structure Template Library

http://geometry.poly.edu/HDSTL/doc/hdstl/table of contents.htm (Site appears to be dead)

Partially complete documentation, and no apparent recent updates. Interesting implementation in template
form. The design is described in the paper Designing and implementing a general purpose halfedge data
structure by Hervé Bronnimann which is a excellent introduction to deep implementation issues. The
paper can be found on the small page here. (A couple of other versions can also be found on
Bronnimann's sites, but this appears to be the most complete).

CGAL - Computational Geometry Algorithms Library

http://www .cgal.org/

A powerful library for computational geometry users and researchers. Template based and featuring
support for arbitrary precision math, the learning curve is a bit steep. It is, however, very robust and
widely used by the research community.

For DCEL information in particular, see the following two starting points in the CGAL documentation:

Halfedge Data Structures in the CGAL manual.
http://www.cgal.org/Manual/doc_html/cgal manual/HalfedgeDS/Chapter main.html

Example of the use of a DCEL in a topological map implementation from an old version of the CGAL
manual.
http://www.ics.uci.edu/~dock/manuals/cgal manual/Topological map/Chapter main.html

Lutz Kettner homepage.
http://www.mpi-sb.mpg.de/~kettner/ Researcher at Max-Planck Institut fur Informatik. Previously

http://www.holmes3d.net/graphics/dcel/ Page 11 of 12


http://www.holmes3d.net/graphics/offfiles/
http://www.holmes3d.net/graphics/dcel/DCELViewer.zip
http://www.flipcode.com/articles/article_halfedge.shtml
http://geometry.poly.edu/HDSTL/doc/hdstl/table_of_contents.htm
http://photon.poly.edu/~hbr/
http://photon.poly.edu/~hbr/publi/hdstl.html
http://www.cgal.org/
http://www.cgal.org/Manual/doc_html/cgal_manual/HalfedgeDS/Chapter_main.html
http://www.ics.uci.edu/~dock/manuals/cgal_manual/Topological_map/Chapter_main.html
http://www.mpi-sb.mpg.de/~kettner/

The DCEL Data Structure for 3D Graphics 6/20/13 12:28 PM

involved with the CGAL project, notably including the DCEL subsystem.

Computational Geometry Algorithms and Applications: Third Edition

by M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Springer-Verlag, Berlin Heidelberg,
2008 ISBN: 3540779736

I have the first edition of this book. It is an excellent book with detailed descriptions of the DCEL and
many of its uses. Although I have not read the later editions, I assume they are written at the same high
level of quality.

Amazon Listing

TTL: The Triangulation Template Library
http://sintef.org/Projectweb/Geometry-Toolkits/TTL/ A template-based library for triangulation and
constrained triangulation. Contains a built-in half-edge data structure.

The comp.graphics.algorithms FAQ
The Geometric Data Structures section of the comp.graphics.algorithms FAQ has a good discussion of the
half-edge data structure, including lucid implementation recommendations.

Graphics Links at Holmes3D.net
Page contents copyright Ryan Holmes

http://www.holmes3d.net/graphics/dcel/ Page 12 of 12


http://www.amazon.com/gp/product/3540779736/
http://sintef.org/Projectweb/Geometry-Toolkits/TTL/
http://cgafaq.info/wiki/Geometric_Data_Structures
http://cgafaq.info/wiki/Main_Page
http://www.holmes3d.net/graphics/
http://www.holmes3d.net/ryan/

